Taxon: Brassica napus L.

Genus: Brassica
Family: Brassicaceae (alt.Cruciferae)
Tribe: Brassiceae
Nomen number: 7661
Place of publication: Sp. pl. 2:666. 1753
Link to protologue:
Name Verified on: 24-Feb-2010 by ARS Systematic Botanists. Last Changed: 24-Feb-2010
Species priority site is: North Central Regional PI Station (NC7)
Accessions: 593 in National Plant Germplasm System (GoogleMap)

Common names:

  • rape  (Source: BSBI) - English
  • seiyō-aburana  (Source: F Japan) - Japanese Rōmaji
  • raps  (Source: Kulturvaxtdatabas) - Swedish
  • ou zhou you cai  (Source: F ChinaEng) - Transcribed Chinese

Economic Importance:

  • Gene sources: potential for disease resistance in cabbage/kale (fide Phytopathology 97:1391. 2007, based on new resynthesized lines of B. napus)
  • Gene sources: potential for disease resistance in rape (fide Theor Appl Genet 102:487. 2001, based on recombinant lines of B. napus carrying resistance genes from A-genome)
  • Gene sources: research in plant biology (fide Hereditas 111:255, 260. 1989)
  • Gene sources: secondary genetic relative of mustard (fide Transgen Res 3:274. 1994)
  • Gene sources: secondary genetic relative of turnip (fide Transgen Res 3:274. 1994)
  • Gene sources: tertiary genetic relative of Abyssinian cabbage (fide Guide Germ Brassica)
  • Gene sources: tertiary genetic relative of arugula (fide Euphytica 158:213, 217. 2007, based on reports of successful hybridization with Eruca vesicaria)
  • Gene sources: tertiary genetic relative of black mustard (fide Transgenic Res 3:263-278. 1994)
  • Gene sources: tertiary genetic relative of cabbage/kale (fide Transgen Res 3:274. 1994)
  • Gene sources: tertiary genetic relative of crambe (fide Wild Crop Rel Oils 5:112. 2011)
  • Gene sources: tertiary genetic relative of radish (based on records of hybrid formation with Raphanus sativus fide Guide Germ Brassica)
  • Gene sources: tertiary genetic relative of white mustard (based on records of hybrid formation by embryo rescue and ovary culture with Sinapis alba fide Chromosome Res 13:819. 2005)
  • Weed: potential seed contaminant (fide Weed CIBA)

Distributional Range:



  • Asia-Temperate

    • China: China
    • Eastern Asia: Japan
    • Western Asia: Afghanistan
  • Australasia

    • Australia: Australia
    • New Zealand: New Zealand
  • Europe

    • Europe
  • Northern America

    • Canada ; Mexico ; United States
  • Southern America

    • Central America: Central America
    • Southern South America: Argentina ; Chile
    • Western South America: Ecuador Galapagos Islands

  • Cultivated

  • Africa

    • East Tropical Africa: Kenya ; Tanzania
    • Northeast Tropical Africa: Ethiopia
    • South Tropical Africa: Zimbabwe
    • West Tropical Africa: Mali
  • Asia-Temperate

    • China: China
    • Eastern Asia: Japan
    • Middle Asia: Kazakhstan
    • Russian Far East: Russian Federation-Far East Far East
    • Siberia: Russian Federation-Eastern Siberia Eastern Siberia; Russian Federation-Western Siberia Western Siberia
    • Western Asia: Afghanistan ; Iran
  • Asia-Tropical

    • Indian Subcontinent: India ; Pakistan
  • Australasia

    • Australia: Australia
    • New Zealand: New Zealand
  • Europe

    • Europe
  • Northern America

    • Canada ; Mexico ; United States
  • Southern America

    • South America
    • Central America: Central America


  • PROTABASE, the information base of PROTA (Plant Resources of Tropical Africa) (on-line resource). (PROTA4U)
  • Acevedo-Rodríguez, P. & M. T. Strong Catalogue of seed plants of the West Indies. Smithsonian Contr. Bot. 98. 2012 (L West Indies)
  • Afonin, A. N., S. L. Greene, N. I. Dzyubenko, & A. N. Frolov, eds. Interactive agricultural ecological atlas of Russia and neighboring countries. Economic plants and their diseases, pests and weeds (on-line resource). (AgroAtlas)
  • Aldén, B., S. Ryman, & M. Hjertson Svensk Kulturväxtdatabas, SKUD (Swedish Cultivated and Utility Plants Database; online resource on 2012 (Kulturvaxtdatabas)
  • Allan, H. H. B. et al. Flora of New Zealand. (F NZeal)
  • Botanical Society of the British Isles BSBI taxon database (on-line resource). (BSBI)
  • Chen, B.-Y. & W. K. Heneen 1989. Resynthesized Brassica napus L.: A review of its potential in breeding and genetic analysis Hereditas (Beijing) 111:255-263.
  • Chen, H.-F. et al. 2007. Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris Pl. Cell Rep. 26:1791-1800.
  • Cheung, F. et al. 2009. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence Pl. Cell 221:1912-1928.
  • Chrungu, B. et al. 1999. Production and characterization of interspecific hybrids between Brassica maurorum and crop brassicas Theor. Appl. Genet. 98:608-613.
  • CIBA-GEIGY, Basel, Switzerland Documenta CIBA-GEIGY (Grass weeds 1. 1980, 2. 1981; Monocot weeds 3. 1982; Dicot weeds 1. 1988) (Weed CIBA)
  • Clapham, A. R. et al. Flora of the British Isles, ed. 2. (F BritClap)
  • Delourme, R. et al. 2006. Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus) Eur. J. Pl. Pathol. 114:41-52.
  • Erhardt, W. et al. Der große Zander: Enzyklopädie der Pflanzennamen. 2008 (Zander Ency)
  • Erickson, L. R. et al. 1983. Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids Theor. Appl. Genet. 65:201-206.
  • FitzJohn, R. G. et al. 2007. Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape (Euphytica) 158:209-230.
  • FNA Editorial Committee Flora of North America. (F NAmer)
  • Food and Agriculture Organization of the United Nations (FAO) 2010. Ecocrop (on-line resource). (Ecocrop)
  • George, A. S., ed. Flora of Australia. (F Aust)
  • Hasan, M. et al. 2006. Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers Genet. Resources Crop Evol. 53:793-802.
  • Institute of Pacific Islands Forestry Pacific Island Ecosystems at Risk (PIER): plant threats to Pacific ecosystems (on-line resource). (Pacif I Ecosyst Risk)
  • Instituto de Botánica Darwinion Flora del Conosur. Catálogo de las plantas vasculares. (F ConoSur)
  • Iwatsuki, K. et al. Flora of Japan. (F Japan)
  • Joyeux, A. et al. 1999. Genetic mapping of plant diseases resistance gene homologues using a minimal Brassica napus population (Genome) 42:735-743.
  • Kirti, P. B. et al. 1995. Transfer of Ogu cytoplasmic male sterility to Brassica juncea and improvement of the male sterile line through somatic cell fusion Theor. Appl. Genet. 91:517-521.
  • Komarov, V. L. et al., eds. Flora SSSR. (F USSR)
  • Kunakh, V. A. et al. 2008. Mixoploidy in wild and cultivated species of Cruciferae capable of hybridizing with rapeseed Brassica napus Cytol. & Genet. 42:204-209.
  • Lefol, E. et al. 1997. Sexual hybridisation in crosses of cultivated Brassica species with the crucifers Erucastrum gallicum and Raphanus raphanistrum: potential for gene introgression (Euphytica) 95:127-139.
  • Li, M. et al. 2006. Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B. rapa and Cc from Brassica carinata Crop Sci. (Madison) 46:234-242.
  • Liberty Hyde Bailey Hortorium Hortus third. (Hortus 3)
  • Mailer, R. J. et al. 2008. Anti-nutritional components, fibre, sinapine and glucosinolate content, in Australia canola (Brassica napus L.) meal J. Amer. Oil Chem. Soc. 85:937-944.
  • Mansfeld, R. Die Kulturpflanze, Beiheft 2. (Mansfeld)
  • Mun-Chan, B. et al. 1986. A checklist of the Korean cultivated plants (Kulturpflanze) 34:85.
  • Munro, D. B. Canadian poisonous plants information system (on-line resource). (Can Poison Pl)
  • Nasir, E. & S. I. Ali, eds. Flora of [West] Pakistan. (F Pak)
  • Nicolas, S. D. et al. 2009. Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids Pl. Cell 21:373-385.
  • Personal Care Products Council International Nomenclature Cosmetic Ingredient (INCI)
  • Plieske, J. & D. Struss 2001. STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus Theor. Appl. Genet. 102:483-488.
  • Porcher, M. H. et al. Searchable World Wide Web Multilingual Multiscript Plant Name Database (MMPND) (on-line resource). (Pl Names)
  • Pradhan, A. K. et al. 1992. Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous Theor. Appl. Genet. 85:331-340.
  • Prakash, S., S. R. Bhat & T.-D. Fu 2009. Chapter 7. Wild germplasm and male sterility (Biol Breed Crucifer) 113-128.
  • Qiong, H. et al. 2009. Chapter 13. Introgression of genes from wild crucifers (Biol Breed Crucifer) 261-308.
  • Rao, G. U. et al. 1998. Isolation of useful variants in alloplasmic crop bassicas in the cytoplasmic background of Erucastrum gallicum (Euphytica) 103:301-306.
  • Rao, G. U. et al. 1996. Production of hybrids, amphiploids and backcross progenies between cold-tolerant wild species, Erucastrum abyssinicum and crop brassicas Theor. Appl. Genet. 92:786-790.
  • Rechinger, K. H., ed. Flora iranica. (F Iran)
  • Rutledge, R. C. et al. 1991. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family Molec. Gen. Genet. 229:31-40.
  • Rygulla, W. et al. 2007. Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridization (Phytopathology) 97:1391-1396.
  • Scheffler, J. A. & P. J. Dale 1994. Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species Transgenic Res. 3:263-278.
  • Siemens, J. 2002. Interspecific hybridisation between wild relatives and Brassica napus to introduce new resistance traits into the oilseed rape gene pool Czech J. Genet. Pl. Breed. 38:155-157.
  • Snowdon, R. et al. 2007. Chapter 7. Brassica oilseeds (Genet Res Chrom Crop) 196-230.
  • Snowdon, R. et al. 2007. Chapter 2. Oilseed rape (Genome Map Mol Breed) 2:55-114.
  • Song, K. et al. 1988. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species Theor. Appl. Genet. 75:784-794.
  • Song, K. et al. 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution Proc. Natl. Acad. Sci. U.S.A. 92:7719-7723.
  • Tsunoda, S. et al. 1980. Brassica crop and wild allies, biology and breeding. (Brassica Crop Wild) 111-112.
  • Tutin, T. G. et al., eds. Flora europaea. (F Eur)
  • van Treuren, R. et al. 2012. Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb's lettuce, rhubarb and rocket salad): composition and gaps Genet. Resources Crop Evol. 59:981-997.
  • Velasco, L. et al. 1998. Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica Genet. Resources Crop Evol. 45:371-382.
  • Wang, Y. P. et al. 2005. Behaviour of Sinapis alba chromosomes in a Brassica napus background revealed by genomic in-situ hybridization Chromosome Res. 13:819-826.
  • Warwick, S. I. et al. 2009. PART III. Interspecific and intergeneric hybridization data (Guide Germ Brassica) 1-91.
  • Wei, W. et al. 2010. Development of a novel Sinapis arvensis disomic addition line in Brassica napus containing the restorer gene for Nsa CMS and improved resistance to Sclerotinia sclerotiorum and pod shattering Theor. Appl. Genet. 120:1089-1097.
  • Wu Zheng-yi & P. H. Raven et al., eds. Flora of China (English edition). (F ChinaEng)
  • Yao, X.-C. et al. 2010. Intra- and intergenomic relationships in interspecific hybrids between Brassica (B. rapa, B. napus) and a wild species B. maurorum as revealed by genomic in situ hybridization (GISH) (Euphytica) 173:113-120.

Check other web resources for Brassica napus L. :